GABA transporters in the mammalian cerebral cortex: localization, development and pathological implications.

نویسندگان

  • Fiorenzo Conti
  • Andrea Minelli
  • Marcello Melone
چکیده

The extracellular levels of gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the mammalian cerebral cortex, are regulated by specific high-affinity, Na+/Cl- dependent transporters. Four distinct genes encoding GABA transporters (GATs), named GAT-1, GAT-2, GAT-3, and BGT-1 have been identified using molecular cloning. Of these, GAT-1 and -3 are expressed in the cerebral cortex. Studies of the cortical distribution, cellular localization, ontogeny and relationships of GATs with GABA-releasing elements using a variety of light and electron microscopic immunocytochemical techniques have shown that: (i) a fraction of GATs is strategically placed to mediate GABA uptake at fast inhibitory synapses, terminating GABA's action and shaping inhibitory postsynaptic responses; (ii) another fraction may participate in functions such as the regulation of GABA's diffusion to neighboring synapses and of GABA levels in cerebrospinal fluid; (iii) GATs may play a role in the complex processes regulating cortical maturation; and (iv) GATs may contribute to the dysregulation of neuronal excitability that accompanies at least two major human diseases: epilepsy and ischemia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of paraoxon on the synaptosomal GABA uptake in rat hippocampus and cerebral cortex

Introduction: Paraoxon (the neurotoxic metabolite of organophosphorus (OP) insecticide, parathion) exerts acute toxicity by inhibition of acetylcholinesterase (AChE), leading to the accumulation of acetylcholine in cholinergic synapses and hence overstimulation of the cholinergic system. Since, reports on changes in the level of γ- amino butyric acid (GABA) during OP-induced convulsion have bee...

متن کامل

Effect of Paraoxon on GABA Uptake by Rat Cerebral Cortex Synaptosomes

Background: It has been suggested that organophosphates may inhibit gamma-aminobutyric acid (GABA) metabolism in synaptosomal preparations. In the present investigation, we have assessed the interaction between paraoxon and the GABA system at synaptic level. Methods: Synaptosomes were prepared from male Wistar rats (200-250 g). Cerebral cortex was dissected and homogenized, then centrifuged at ...

متن کامل

Laminar Organization of Cerebral Cortex in Transforming Growth Factor Beta Mutant Mice

Transforming growth factor betas (TGF?s) are one of the most widespread and versatile cytokines. The three mammalian TGF? isoforms, ?1, ?2, and ?3, and their receptors regulate proliferation of neuronal precursors as well as survival and differentiation in neurons of developing and adult nervous system. Functions of TGF?s has a wide spectrum ranging from regulating cell proliferation and differ...

متن کامل

THE MORPHO-FUNCTIONAL STATE OF THE BRAIN UNDER CONDITIONS OF HYPOKINESIA AND ITS POSSIBLE PHARMACOLOGICAL CORRECTION BY GABA-ERGIC SUBSTANCES

In this paper it has been shown that deterioration of the brain cortex capillary system and negative dynamics of cerebral tissue morphology occur under conditions of hypo kinesia. Simultaneously, gamma-aminobutyric acid (GABA) and piracetam have been shown to favor the development of vasodilation and prevent further worsening of the cerebral blood supply. During the experiment, it was also ...

متن کامل

Localization and Function of GABA Transporters GAT-1 and GAT-3 in the Basal Ganglia

GABA transporter type 1 and 3 (GAT-1 and GAT-3, respectively) are the two main subtypes of GATs responsible for the regulation of extracellular GABA levels in the central nervous system. These transporters are widely expressed in neuronal (mainly GAT-1) and glial (mainly GAT-3) elements throughout the brain, but most data obtained so far relate to their role in the regulation of GABA(A) recepto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain research. Brain research reviews

دوره 45 3  شماره 

صفحات  -

تاریخ انتشار 2004